Tekoäly avuksi myrskyjen aiheuttamien sähkökatkojen ennakointiin
Aalto-yliopiston ja Ilmatieteen laitoksen menetelmä parantaa sähköyhtiöiden kykyä ennakoida myrskyjen vaikutuksia.
Suomessa myrskyää kaikkina vuodenaikoina. Myrskyjen katkomat puut saattavat kaataa mennessään voimalinjoja ja vaurioittaa muuntajia, minkä seurauksena sadat tuhannet taloudet kärsivät vuosittain sähkökatkoista.
Aalto-yliopiston ja Ilmatieteen laitoksen tutkijoiden kehittämä menetelmä kykenee ennustamaan vakavat myrskyt useita päiviä etukäteen, mikä auttaa sähköyhtiöitä korjausten ja niihin tarvittavan henkilökunnan ennakoinnissa. Menetelmä perustuu tekoälyyn, etenkin koneoppimiseen.
Mainos, juttu jatkuu alla Mainos päättyy- Aiemmassa mallissamme keskityimme ennustamaan Suomen kesäilmastolle tyypillisiä, erittäin paikallisia ukkosmyrskyjä, joilla on lyhyt elinkaari. Uusi mallimme tarkastelee suuria matalapaineisia myrskyjä, jotka ovat Suomessa yleisiä myöhään syksyllä ja talvella. Ne ovat kesän rajuilmoihin verrattuna paitsi laajempia myös selvästi pitkäkestoisempia ja aiheuttavat tuhoja laajemmilla alueilla. Mallissa käytetään jopa kymmenen vuorokauden päähän ulottuvia sääennustetietoja, sanoo Roope Tervo, Aalto-yliopiston tohtorikoulutettava ja Ilmatieteen laitoksen ohjelmistoarkkitehti.
Tarkkuus paranee
Malli luokittelee myrskyt kolmeen luokkaan: ei vaurioita, pieniä vaurioita (1–140 vaurioitunutta muuntajaa) ja suuria vaurioita (yli 140 vaurioitunutta muuntajaa). Se kykenee ennustamaan 15 km:n tarkkuudella, mihin myrsky iskee ja kolmen tunnin tarkkuudella sen, milloin myrsky iskee. Mallin herkkyys on noin 0,6, eli se kykenee ennustamaan 60 prosentin tarkkuudella, mihin luokkaan myrsky kuuluu. Tarkkuus puolestaan on noin 0,8, eli 80 prosenttia tuhoisiksi arvioiduista myrskyistä todella aiheuttaa ennustettua vahinkoa.
- Geospatiaalinen ja ajallinen resoluutio tarkentuu säämallien kehittyessä. Vuonna 2024 ennusteen geospatiaalinen ja temporaalinen resoluutio on viisi kilometriä ja yksi tunti, sanoo Tervo.
- Sähkökatkojen ennustustarkkuutta voi myös vielä hieman parantaa. Esimerkiksi routatietojen ja puiden lehtiä koskevan tietojen lisääminen parantaisi todennäköisesti tuloksia. Ennuste ei kuitenkaan koskaan tule olemaan täydellinen. On myös hyvä muistaa, että kun käytetään sääennustetietoja, virheitä tulee sekä sään ennustamisessa että sähkökatkoja ennustavissa malleissa.
Mainos, juttu jatkuu alla Mainos päättyyAallon ja Ilmatieteen laitoksen tiimin aiemmin kehittämää ukkosenennustamistyökalua ovat käyttäneet sähköverkko-operaattorit Järvi-Suomen Energia, Loiste Sähköverkko ja Imatran Seudun Sähkönsiirto.
- Uusi menetelmä on operaattoreiden käytössä entisen käyttöliittymän kautta, ja työkalun käyttö on parhaillaan kokeilussa, Tervo kertoo.